MTH 310 HW 10 Solutions

April 18, 2016

Section 5.2, Problem 8

Write out the multiplication table for $\mathbb{Q}[x] /\left(x^{2}\right)$.
Answer. If $[p(x)],[q(x)] \in \mathbb{Q}[x] /\left(x^{2}\right)$, then $[p(x)]=[a x+b]$ and $[q(x)]=[c x+d]$. Then $[p(x)][q(x)]=[p(x) q(x)]=\left[a c x^{2}+(a d+b c) x+b d\right]=[(a d+b c) x+b d]$.

Section 5.2, Problem 11

Show that the above ring is not a field.
Answer. In $\mathbb{Q}[x] /\left(x^{2}\right),[x][x]=\left[x^{2}\right]=[0]$, so there is a nonzero divisor of zero. The claim then follows by this theorem, which is proven differently in Hungerford.
Theorem 1. All fields are integral domains. That is, if a, b are elements of a field and $a b=0$, then either $a=0$ or $b=0$.

Proof. Assume the above with $a \neq 0$. Multiplying both sides of the equation $a b=0$ by a^{-1} (which exists as $a \neq 0$) yields $b=0$.

Note that there are rings in which $a b=0$ but both a, b are not zero. For example, in $\mathbb{Z} \backslash(6)$ (integers modulo 6), $2 * 3=0$. Pretty crazy.

1 Section 5.3, Problem 3

If $a \in \mathbb{F}$, describe the field $\mathbb{F}[x] /(x-a)$.
Answer. We claim that $\mathbb{F}[x] /(x-a)$ is isomorphic to \mathbb{F}. To show this, let $f: \mathbb{F} \rightarrow$ $\mathbb{F}[x] /(x-a)$ where $f(z)=[z]$. We claim f is an isomorphism. It is a homomorphism, and is surjective since every class $[p(x)] \in \mathbb{F}[x] /(x-a)$ has an element $q \in \mathbb{F}$, by the division algorithm. It is injective because if $\left[z_{1}\right]=\left[z_{2}\right]$ then $z_{1}=z_{2}$.

