MTH 310 HW 10 Solutions

April 18, 2016

Section 5.2, Problem 8

Write out the multiplication table for $\mathbb{Q}[x]/(x^2)$. **Answer.** If $[p(x)], [q(x)] \in \mathbb{Q}[x]/(x^2)$, then [p(x)] = [ax + b] and [q(x)] = [cx + d]. Then $[p(x)][q(x)] = [p(x)q(x)] = [acx^2 + (ad + bc)x + bd] = [(ad + bc)x + bd]$.

Section 5.2, Problem 11

Show that the above ring is not a field.

Answer. In $\mathbb{Q}[x]/(x^2)$, $[x][x] = [x^2] = [0]$, so there is a nonzero divisor of zero. The claim then follows by this theorem, which is proven differently in Hungerford. **Theorem 1.** All fields are integral domains. That is, if a, b are elements of a field and ab = 0, then either a = 0 or b = 0.

Proof. Assume the above with $a \neq 0$. Multiplying both sides of the equation ab = 0 by a^{-1} (which exists as $a \neq 0$) yields b = 0.

Note that there are rings in which ab = 0 but both a, b are not zero. For example, in $\mathbb{Z} \setminus (6)$ (integers modulo 6), 2 * 3 = 0. Pretty crazy.

1 Section 5.3, Problem 3

If $a \in \mathbb{F}$, describe the field $\mathbb{F}[x]/(x-a)$.

Answer. We claim that $\mathbb{F}[x]/(x-a)$ is isomorphic to \mathbb{F} . To show this, let $f : \mathbb{F} \to \mathbb{F}[x]/(x-a)$ where f(z) = [z]. We claim f is an isomorphism. It is a homomorphism, and is surjective since every class $[p(x)] \in \mathbb{F}[x]/(x-a)$ has an element $q \in \mathbb{F}$, by the division algorithm. It is injective because if $[z_1] = [z_2]$ then $z_1 = z_2$.